Read data

Here we read the msa_models.rds file which contains the estimates and standard errors obtained from refitting the analyses submitted by the teams.

msa_models <- readRDS("./data/analyses/msa_models.rds") %>%
  mutate(
    outcome = as.factor(outcome),
    typicality = as.factor(typicality),
    temporal_window = as.factor(temporal_window)
  ) %>%
  droplevels() %>%
  mutate(
    outcome = contr_code_sum(outcome),
    typicality = contr_code_sum(typicality),
    temporal_window = contr_code_sum(temporal_window)
  )
priors_prereg <- c(
  prior(normal(0, 1), class = Intercept),
  prior(cauchy(0, 1), class = sd)
)

meta_bm_prereg <- brm(
  estimate | se(se) ~ (1 | animal),
  data = msa_models,
  prior = priors_prereg,
  chain = 4,
  seed = my_seed,
  cores = 4,
  backend = "cmdstanr",
  threads = threading(2),
  file = "./data/meta_analysis/meta_bm_prereg.rds"
)
meta_bm_prereg
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: estimate | se(se) ~ (1 | animal) 
##    Data: msa_models (Number of observations: 192) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Group-Level Effects: 
## ~animal (Number of levels: 33) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.04      0.01     0.03     0.07 1.00     1161     1902
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -0.00      0.01    -0.03     0.02 1.00     1386     1734
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.00      0.00     0.00     0.00   NA       NA       NA
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).